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PRThe ability to pool data from multiple MRI scanners is becoming increasingly important with the influx in

multi-site research studies. Fast spin echo (FSE) dual spin echo sequences are often chosen for such studies
based principally on their short acquisition time and the clinically useful contrasts they provide for assessing
gross pathology. The practicality of measuring FSE-T2 relaxation properties has rarely been assessed. Here,
FSE-T2 relaxation properties are examined across the three main scanner vendors (General Electric (GE),
Philips, and Siemens). The American College of Radiology (ACR) phantom was scanned on four 1.5 T
platforms (two GE, one Philips, and one Siemens) to determine if the dual echo pulse sequence is susceptible
to vendor-based variance. In addition, data from 85 subjects spanning the spectrum of normal aging, mild
cognitive impairment (MCI), and Alzheimer's disease (AD) was obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) to affirm the presence of any phantom based between vendor variance and
determine the relationship between this variance and disease. FSE-T2 relaxation properties, including peak
FSE-T2 and histogram width, were calculated for each phantom and human subject. Direct correspondence
was found between the phantom and human subject data. Peak FSE-T2 of Siemens scannerswas consistently
at least 20 ms prolonged compared to GE and Philips. Siemens scanners showed broader FSE-T2 histograms
than the other scanners. Greater variance was observed across GE scanners than either Philips or Siemens.
FSE-T2 differences were much greater with scanner vendor than between diagnostic groups, as no
significant changes in peak FSE-T2 or histogram width between normal aged, MCI, and AD subject groups
were observed. These results indicate that whole brain histogram measures are not sensitive enough to
detect FSE-T2 changes between normal aging, MCI, and AD and that FSE-T2 is highly variable across scanner
vendors.
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Alzheimer's disease (AD) is a progressive neurodegenerative
disorder characterized by an insidious onset followed by gradual
decline in cognitive function. It is themost common formof dementia
and is quickly becoming a global crisis, affecting approximately 10%
of individuals over age 65 and nearly 50% of individuals over 85 years
of age (Evans et al., 1989). An additional 19% of individuals over age
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65, and 29% over age 85, are estimated to have mild cognitive
impairment (MCI) (Lopez et al., 2003). MCI represents the transi-
tional phase between normal aging and probable AD, whereby
individuals have diminished memory function, yet maintain normal
levels of daily activity and are not demented (Petersen et al., 2001).
Individuals with the amnestic form of MCI are more likely to develop
AD than their normal counterparts; those with amnestic MCI show
rates of conversion around 12% per year, whereas normal elderly
tend to convert to AD at 1–2% a year (Petersen et al., 1999). With the
development of potential therapeutic interventions it is becoming
important to identify potential biomarkers of disease presence as
early as possible.

Tissue relaxation properties as measured with quantitative T2 MRI
have the potential be a valuable resource in early identification of
individuals with MCI and AD. T2 is a function of tissue free water
properties and the local environment of the nuclei, allowing one to
ltiple scanners with dual echo FSE: Applications to
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Table 1 t1:1

Subject gender breakdown by vendor and diagnostic group (female/male).
t1:2
t1:3Subject enrollment table

t1:4Philips GE Siemens Total

t1:5Normal 6/3 5/13 4/4 15/20
t1:6MCI 2/5 7/6 7/4 16/15
t1:7AD 4/7 6/4 6/4 16/15
t1:8Total 12/15 18/23 17/12 47/50
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examine tissue state and hydration (Jack, 1996). The neuropathology
of MCI and AD both involve the deposition of neurofibrillary tangles
and amyloid plaques. These entities result in neuronal loss and may
affect the relaxation properties of the surrounding tissue, which in
turn may alter the T2 times. Histological studies suggest that iron and
water content increase in AD brains, resulting in shortened and
prolonged T2 values, respectively (Schenck et al., 2006), as T2 is
sensitive to iron levels in brain tissue (Vymazal et al., 1996; Bartzokis
et al., 1997). Because quantitative T2 values reflect tissue character-
istics, it may be useful to study neuronal degradation in AD prior to
other detectable atrophy.

Most previous research on T2 relaxation in AD has been
conducted at a single research center using data collected on a
single scanner. Given the current trend for conducting multi-site
studies and for individual sites to have multiple scanners, often
from different vendors, it is beneficial to examine T2 relaxation
properties in a multi-vendor research study. Multi-site investiga-
tions enable a larger recruitment population than at a single site;
however, studies using imaging information obtained at multiple
sites have the added difficulty of ensuring consistent results
between sites. Of importance to this study are potential differences
in the fast (a.k.a. turbo) spin echo (FSE) readouts used with the 2D-FSE
pulse sequence. It has been shown using voxel-based morphometry
(VBM) that theeffect of disease on regional brain volumemaybegreater
than the effect of scanner variation in a population of AD and normal
aged subjects across six scanners (Stonnington et al., 2008). The current
studywill examine if the sameholds true for FSE-T2 relaxation. It should
be noted that there are a number of ways tomeasure T2 and the results
of eachmethod are likely to be dependent upon the sequence used. For
the purposes of clarity in this manuscript we will be referring to T2 as
FSE-T2 in order to reflect the methodology/sequence that was used to
measure it.

Prior studies on scanner variability have focused on volumetric
measures, primarily derived from T1-weighted pulse sequences.
Image uniformity, geometry (Ihalainen et al., 2004; Fu et al., 2006),
and signal to noise ratio (Fu et al., 2006) have been shown to vary
both within and between vendors and platforms; but, no studies
have examined quantitative T2 using fast spin echo sequences
across multiple vendors or platforms. Since no sequences are
standardized between vendors, it is unknown if the acquired FSE-T2
values are similar or different, and to what degree they may be
different. One relaxometry study that was conducted across three
research sites using GE and Siemens platforms has shown minimal
variance due to a scanner using the DESPOT2 (driven equilibrium
single pulse observation of T2) pulse sequence (Deoni et al., 2008).
In the present study we tested if the dual echo FSE pulse sequence
showed similar accuracy between scanner vendors using both the
ACR phantom and human subjects. It should be noted that specific
pulse sequence parameters are often slightly different between
scanner vendors and platforms in multi-site imaging studies in
order to produce imageswith similar image quality and appearance.
It is unclear how these pulse sequence variations between vendors
affect FSE-T2 values. This paper seeks to quantify these potential
discrepancies.

The specific aim of the current study was to assess the FSE-T2
values obtained from MRI scans of phantoms and the human brain
on either GE, Philips, or Siemens scanners. We used ACR phantom
scans from four MRI scanners and human MRI data acquired from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database,
incorporating multiple platforms from three manufacturers. The
human subjects fell into the categories of normal aging (NL), MCI or
AD groups. In this context, the purposes of this work were: first, to
study possible vendor-dependent systematic differences in FSE-T2
in the ACR phantom and human subjects, and second, to explore
possible FSE-T2 histogram signatures of normal aging, mild
cognitive impairment, and Alzheimer's disease.
Please cite this article as: Bauer, C.M., et al., Whole brain quantitative T
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Materials and methods

Subjects

ACR phantom
The American College of Radiology (ACR) magnetic resonance

accreditation phantom was used to test for scanner variability. The
ACR MR phantom is designed to test a number of parameters,
including geometric distortion, spatial resolution, slice thickness and
position, interslice gap, estimation of image bandwidth, low contrast
detectability, image uniformity, signal to noise ratio, slice offset, and
landmark. For more detailed information on this phantom, refer to
http://www.aamp.org/meetings/99AM/pdf/2728-58500.pdf. The ACR
phantom was used because it is widely available and already part of
the certification system for scanners. It should be noted that the ADNI
phantom is also used each time a subject is scanned in the ADNI study,
but it is only scanned with the MP-RAGE sequence and there are no
data available with this phantom using the FSE sequence. We asked
the specific sites listed in the Acknowledgments to run the ACR
phantom for us as an additional scan.

ADNI subjects
Data from 85 subjects (age range=60–91, average age=75.47, 44

females, 41males,NNL=32NMCI=26,NAD=27) across three vendors
(27 Philips, 29 GE, 29 Siemens) was selected from the ADNI database
(http://www.loni.ucla.edu/ADNI). MMSE scores for each subject were
obtained (MMSENC=24–30, MMSEMCI=17–29, MMSEAD=18–29)
(Table 1). Data from 18 ADNI study sites across Canada and the United
States were chosen at random for the current study. Multiple scanner
brands from each vendorwere accepted in the study: GE: Signa Excite,
Signa HDx; Philips: Achieva, Intera, Gyroscan Intera, Intera Achieva;
Siemens: Sonata, Symphony.

All participants in the ADNI underwent a battery of neuropsycho-
logical tests, including the MMSE (Folstein et al., 1975), the CDR-Sum
of Boxes (Morris, 1993), and the Global dementia scale (GD-scale)
(Auer and Reisberg, 1997; Reisberg et al., 1988). Subjects were
clinically assessed for cognitive status and classified as: (a) normal
controls with normal cognition and memory, CDR 0, and MMSE
between 24 and 30; (b) amnestic MCI with memory complaint
verified by a study partner, memory loss measured by education-
adjusted performance on the Logical Memory II subscale of the
Wechsler Memory Scale-Revised (Wechsler, 1987), preserved activ-
ities of daily living, CDR 0.5, MMSE between 24 and 30, and absence of
dementia at time of baseline MRI scan; or (c) probable AD with
memory complaint validated by an informant, abnormal memory
function for age and education level, absence of depression, impaired
activities of daily living, diminished cognition, CDRN0.5, and MMSE
between 20 and 26.

Alzheimer's Disease Neuroimaging Initiative
The ADNI is a 5-year non-randomized natural history non-

treatment study utilizing data from multiple study centers across
the United States and Canada. The primary aim of the ADNI is to
examine if serial MRI, PET, biological markers, and clinical and
neuropsychological assessments can be combined to analyze the
progression of MCI to early AD. The ADNI is a public–private
2 MRI across multiple scanners with dual echo FSE: Applications to
age.2010.04.255
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Table 2t2:1

ACR phantom results from 4 scanners. Siemens shows approximately 30 ms prolonged
peak T2 compared to GE and Philips. GE showed 10 ms variance between scanners.

t2:2
t2:3 ACR phantom peak T2 and histogram width

t2:4 GE HDx GE Signa Excite Philips Intera Siemens Avanto

t2:5 Peak T2 (ms) 145 135 140 170
t2:6 T2 histogram width 50 50 50 55
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partnership, launched in 2003, funded by the National Institute on
Aging, the National Institute of Biomedical Imaging and Bioengi-
neering, the Food and Drug Administration, private pharmaceutical
companies, and non-profit organizations.

One of themain goals of the ADNI is to develop optimizedmethods
and uniform standards for the acquisition of multicenter MRI and PET
data on normal control subjects and patients with AD and MCI. For
more information, refer to http://www.adni-info.org.

Image acquisition
For the phantom scans, MRI scanning was performed on four 1.5 T

scanners: GE Signa Excite, GE HDx, Philips Intera, and Siemens Avanto.
For the ADNI subjects, 1.5 T scanners from General Electric (GE),
PhilipsMedical Systems, and SiemensMedical Solutionswere used for
examination of tissue from below the base of the cerebellum through
the top of the head.

For both the ACR phantom and study participants, the dual fast/
turbo spin echo pulse sequence used was acquired in the straight axial
plane with the following parameters: effective echo time (TE1eff)=
10.04–13 ms, TE2eff=95.22–103 ms, repetition time (TR)=3000 ms,
echo train length (ETL) (turbo factor)=7–16 (GE=16, Philips=10,
Siemens=7* one Siemens subject had an ETL of 13), echo
spacing=12–12.7 ms, slice thickness=3.0 mm, slice gap=0 mm,
pixel spacing=0.9375 mm, matrix size=228–256×256. Effective TE
was consistent across Philips platforms, but for both GE and Siemens it
variedwithin vendor. Matching parameters between platforms do not
produce the same image quality, thus small variations in pulse
sequence parameters are often incorporated in large-scale studies.
More specific parameter values for each research site can be found at
http://www.loni.ucla.edu/ADNI/Research/Cores. For simplicity, the
pulse sequence will be referred to throughout as FSE, although both
Philips and Siemens call it turbo spin echo (Table 2).

Data processing and segmentation
Images from the two echo times, for both phantoms and human

subjects, were separated using EFilm (Merge Healthcare, Milwaukee,
WI), providing two separate image stacks, one from TE1, the other
from TE2. Header information was separated from the images using
Image J (http://www.rsbweb.nih.gov/ij/). Refer to Fig. 1 for a flow
diagram of the post-processing steps between the directly-acquired
images and the histograms.

The datasets were then analyzed with an in-house computer
program using MathCAD 2001i (PTC, Needham, MA) software to
generate quantitative-MRI maps (Jara et al., 2006; Suzuki et al., 2006;
Jensen et al., 2001). FSE-T2 quantitative maps were generated on a
UN

Fig. 1. Flow chart showing the post-processing data analysis us

Please cite this article as: Bauer, C.M., et al., Whole brain quantitative T
AD, MCI, and normal aging, NeuroImage (2010), doi:10.1016/j.neuroim
pixel-by-pixel basis from the two T2-weighted dual echo FSE datasets,
according to the mono-exponential function: T2=(TE2−TE1)/ln(S1/S2),
where S1 and S2 were the signals obtained at TE1 and TE2, respectively.
Fig. 2 shows typical FSE-T2 quantitative maps for NL subjects, MCI
subjects, and patients with probable AD.

The brain was segmented using a dual-clustering segmentation
algorithm in an in-house MathCAD program (Suzuki et al., 2006; Jara
et al., 2006; Jensen et al., 2001). The scans were individually analyzed
to obtain the best segmentation of the whole brain and eliminate the
inclusion of fat and extra-cranial matter (Fig. 3). Overall the program
was able to segment brain tissue from each vendor with no
appreciable differences in ease.

Histograms of FSE-T2 relaxation times were generated from the
FSE-T2 maps using MathCAD (Fig. 4). The histogram shows an
approximately monomodal curve with an asymmetrical tail repre-
senting meninges and extra-ventricular CSF. The main peak repre-
sents the T2 relaxation time of both gray and white matter (MacKay
et al., 2006; Jara et al., 2006).
TE
D
PR

OOStatistics
Phantom data were visually analyzed for differences in peak FSE-T2

and histogram width. Statistical analysis was performed on the human
data using Excel, Datadesk version 6.1, and SPSS 13. Differences in
gender composition between groups were assessed using χ2 test.
Multiple analysis of variance (MANOVA) was used to examine
differences between diagnostic groups and platform vendor on peak
FSE-T2, FSE-T2 full width at half maximum (T2-width), and volumes for
each segment. Scheffe post-hoc analysiswas performed on the data. The
overall interactionbetween scanner, diagnosis, anddependent variables
was examined with MANOVA with further pairwise comparisons using
Scheffe post-hoc analysis. F-tests were used to examine variance
between scanner vendors for peak FSE-T2 and histogram width.
ANOVA with Scheffe post-hoc analysis was performed within scanner
vendor to test for differences between NL, MCI, and AD.

Partial correlation analysis was performed to examine relation-
ships between peak FSE-T2, FSE-T2 histogram width, and neuropsy-
chological test scores while controlling for scanner vendor.
Results

ACR phantom

Phantom histograms show differences in peak FSE-T2 between
manufacturers (GEHDx=145 ms, GESigna Excite=135 ms, PhilipsIntera=
140 ms, SiemensAvanto=170 ms).Histograms of the Siemens scan show
approximately 30 ms prolonged peak FSE-T2 compared to the GE and
Philips counterparts. Histograms from GE scans show the same average
value as the Philips histograms (140 ms), but an approximately 10 ms
difference was noted between the 2 GE scanners. Also, Siemens
histograms were broader by 5 ms as compared to either GE or Philips
(histogram width, GEHDx=50ms, GESigna Excite=50 ms, PhilipsIntera=
50ms, SiemensAvanto=55ms).
ed to obtain histograms from the directly-acquired images.

2 MRI across multiple scanners with dual echo FSE: Applications to
age.2010.04.255
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Fig. 2. Representative T2 quantitative MR maps. a) T2 map of a 79 year old male control subject on a GE Signa Excite platform. b) T2 map of a 77 year old female subject with MCI
scanned on a Siemens Sonata platform. c) Shows a T2 map from a 75 year old male AD subject scanned with a Siemens Avanto platform.
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ADNI subjects

Age and gender were not significantly different amongst diagnos-
tic groups or scanner vendors (pN0.05). Average histograms were
created according to vendor and subject population (Fig. 5).

Peak FSE-T2

Overall analysis showed a significant difference between scanner
vendors (F 2, 73=146.37, pb0.0001). Follow up comparisons
revealed Siemens peak FSE-T2 was 15–29 ms (pb0.0001) longer
than both GE and Philips across the three diagnostic groups (Fig. 5).
GE peak values were on average 4 ms prolonged over Philips values;
however, this did not reach significance possibly due to the larger
degree of variance seen across GE subjects.

Within GE platforms no significant differences were found for peak
FSE-T2. The directionality of change inGE indicated a decrease in FSE-T2
fromNL toMCI, an increase in FSE-T2 fromMCI toAD, and an increase in
FSE-T2 from NL to AD. Within Philips platforms, no significant
differences were found for peak FSE-T2. The directionality of change
in Philips shows an increase in peak FSE-T2 fromNL toMCI, a decrease in
peak FSE-T2 fromMCI to AD, and a decrease in peak FSE-T2 from NL to
AD. Within Siemens platforms a significant difference was found for
peak FSE-T2 betweenNL andMCI (pN0.05), but not betweenNL and AD
subjects. The directionality of peak FSE-T2 change in Siemens indicates a
decrease from NL to MCI, an increase from MCI to AD, and a decrease
from NL to AD.

Tests of variance indicate that Philips (s2=7.764) scanners show
significantly lower variance than either GE (s2=38.239) (pb0.001) or
Siemens (s2=30.988) (pb0.001) for peak FSE-T2. GE and Siemens
variance for peak FSE-T2 was not significantly different (pN0.05).

FSE-T2 histogram width

The width of the histogram reflects the homogeneity of tissue
composition. Width was measured at half maximum for each FSE-T2
UN
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Fig. 3. Representative example of segmented brain tissue using a dual-clustering
segmentation algorithm. a) The brain tissue included in the segmentation is represented
in the highlighted region. b) Segmented brain.
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73=9.483, pb0.0001). ANOVA revealed a significant difference
between Siemens and both Philips and GE (pb0.005).

Correlations

Peak FSE-T2 and FSE-T2 width were assessed for correlations with
age, CDR, MMSE, and GD scale scores. Peak FSE-T2 was found to
significantly correlate with age (r=0.370, pb0.01). FSE-T2 histogram
width was significantly correlated with GD scale (r=0.232, pb0.05).

Discussion

The specific goals of this work were to identify potential vendor-
dependent systematic differences in quantitative FSE-T2 maps of the
ACR phantom and human brain and to study FSE-T2 histogram
properties across the spectrum of normal aging, MCI, and AD.
Significant overall differences were found between scanner vendors
across the FSE-T2 histogram-derived parameters in both phantom
and human studies. Follow up analysis showed that Siemens had
higher FSE-T2 peak values and broader histograms than GE and
Philips. Measurements were not statistically significant between
diagnostic groups when accounting for scanner vendor, which
decreased the effective sample size per group to between 7 and 18
subjects. The small sample size within vendors may partially account
for there not being a significant difference between peak FSE-T2 of AD,
MCI, and normal aging subjects.

The trends between NL, MCI, and AD, suggest a scanner vendor–
disease interaction effect, such that the trend for FSE-T2 between
normal aging, MCI, and AD was inconsistent between vendors (i.e.
normal aging from one vendor produced prolonged T2 compared to
AD, while in another vendor we observed the opposite trend). These
interactions are of greatest concern and will need to be verified with a
larger sample. If true, this suggests that combining data from different
vendors in one analysis, even when using co-factors, will end up
masking the underlying effect.

Peak FSE-T2 was shown to correlate with age, consistent with the
results of a previously published study (Laakso et al., 1996).
Histogram width correlated with GD scale. Histogram width reflects
water environment inhomogeneity (Whittall et al., 1997), indicating
that brain tissue becomes more heterogeneous as the severity of
dementia measured by the GD scale increases.

Variability between sites indicates that therewas a larger degree of
variance between GE and Siemens sites. The variability between sites
using GE scanners was also observed in the phantom scans. Although
GE was the only vendor for which the phantom was scanned on more
than one platform. Additional phantom scans on Philips and Siemens
platforms would be useful to help confirm the degree of variance
between scanners.

Peak FSE-T2, for both phantom and human subjects, was at least
20–30 ms prolonged with Siemens' histograms compared to GE and
2 MRI across multiple scanners with dual echo FSE: Applications to
age.2010.04.255
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standardized between research sites, consistent with protocols of
many other large-scale studies including the FraminghamHeart Study
(DeCarli et al., 2005), MIRAGE (Cuenco et al., 2008), and many clinical
drug trials.

This study poses a few limitations related to pulse sequence
parameters and scanner hardware and software. Because the
sequences were not completely standardized between all platforms,
some scanswere acquiredwith different effective TE or ETL. The signal
intensity with T2 is primarily controlled by echo time. Effective TE
may differ between vendors based on the k-space acquisition scheme,
which may have induced some of the observed scanner-related
variance. Much of the inaccuracy of FSE-T2 is due to stimulated echo,
which is affected by both ETL (turbo factor) and echo spacing. The
observed difference in FSE-T2 may be inherent to the vendor-specific
Please cite this article as: Bauer, C.M., et al., Whole brain quantitative T
AD, MCI, and normal aging, NeuroImage (2010), doi:10.1016/j.neuroim
scheme used to acquire k-lines with the fast spin echo readout, slice
profile, and phase encoding order. Other factors, such as the coils, B0
and B1 inhomogeneities (Majumdar et al., 1986b; Poon and Henkel-
man, 1992), RF pulse imperfections (Majumdar et al., 1986a), and
temperature variations, could also contribute to the scanner-related
variance.

Whole brain histogram-derived FSE-T2 measures may not be
sensitive enough to detect AD-related changes; however, T2 has been
shown to regionally differ in AD and MCI compared to normal aging
(Englund et al., 1987; Kirsch et al., 1992; Laakso et al., 1996; Pitkanen
et al., 1996; Parsey and Krishnan, 1998; Wang et al., 2004; Schenck
et al., 2006; Arfanakis et al., 2007). A potential area for future research
is to examine T2 relaxation times using voxel-based relaxometry
(VBR), which has been used to show T2 changes in autism (Hendry
et al., 2006), epilepsy (Pell et al., 2004; Pell et al., 2008) and multiple
2 MRI across multiple scanners with dual echo FSE: Applications to
age.2010.04.255
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et al., 2007).
Future studies that seek to utilize quantitative FSE-T2 measures

will need to standardize the pulse sequence across scanners or devise
a post-processing method to standardize measures. Alternatively,
small fluid-filled objects with known T2 values could be scanned
alongside each subjects' head to provide reference signal (House et al.,
2006). Using other sequences may also help us to understand some of
the differences between how each vendor handles the processing of
T2 based imaging, but since these are not generally used in multi-site
studies it is difficult to say how this will help us to understand the
differences we have found using the FSE sequence.

This study used MRI and neuropsychological test ADNI data across
NL, MCI and AD subjects. MRI data acquired with GE, Philips, and
Siemens scanners to examine which properties of FSE-T2 quantitative
Please cite this article as: Bauer, C.M., et al., Whole brain quantitative T
AD, MCI, and normal aging, NeuroImage (2010), doi:10.1016/j.neuroim
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MRI may be useful for the classification of MCI and early AD.
Significant quantitative FSE-T2 differences were found between
vendors in peak FSE-T2 and histogram width. The results herein
suggest that FSE-T2 histogram measures can vary significantly with
scanner vendor. Specifically, Siemens data consistently produced
higher peak FSE-T2 values and broader histogram widths than either
GE or Philips. The second purpose was to examine T2 histograms
within normal aging, MCI, and AD over the whole brain. Few
significant differences were found between diagnostic groups and
the observed trends were inconsistent amongst the represented
vendors, suggesting a potential scanner–disease interaction. The
differences in scanner overshadowed the potential influence of
subject diagnostic group on FSE-T2 measures. Significant correlations
between peak FSE-T2 and FSE-T2 histogramwidth with global scale of
dementia and measures of memory and cognitive functioning were
observed.

To the authors' knowledge, a multi-site study involving quantita-
tive FSE-T2 datasets from GE, Philips, and Siemens has not been
reported in previous literature. The results obtained in this study
should serve to encourage increased quality control for measures of
FSE-T2 related scans in large-scale studies utilizing data frommultiple
scanner platforms. They also point out potential differential effects of
scanner brand that may not be adequately controlled by adding a co-
variate to a statistical analysis.

Conclusion

The aim of this study was to assess the utility of FSE-T2
quantitative MRI of the brain for the diagnosis of AD and its early
manifestations. The results indicate that FSE-T2 measures can vary
significantly between scanner platforms and that FSE-T2 quantitative-
MRI image processing algorithms which include the platform specific
magnetization dynamic effects during the FSE readouts are needed for
reconciling multi-platform FSE-T2 measurements. Despite these
differences, overall FSE-T2 relaxation properties were related to the
global dementia status of the subjects.
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